МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Костромской государственный университет»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ЛИНЕЙНЫЕ ОПЕРАТОРЫ В ГИЛЬБЕРТОВЫХ ПРОСТРАНСТВАХ

Направление подготовки 01.06.01 Математика и механика

Направленность: Дифференциальные уравнения, динамические системы и оптимальное управление

Квалификация (степень) выпускника: Исследователь. Преподавательисследователь Рабочая программа дисциплины «Линейные операторы в гильбертовых пространствах» разработана в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 01.06.01 Математика и механика (уровень подготовки кадров высшей квалификации), утвержденным приказом Министерства образования и науки РФ от 30 июля 2014 года № 866 с изменениями и дополнениями от 30 апреля 2015 года.

Разработал: Ширяев Кирилл Евгеньевич, доцент кафедры высшей математики, кандидат физико-математических наук, доцент

Рецензент: Землякова Ирина Владимировна, заведующий кафедрой высшей математики, доктор технических наук, профессор

УТВЕРЖДЕНО:

Заведующий кафедрой высшей математики

Землякова Ирина Владимировна, доктор технических наук, профессор

ПРОГРАММА ПЕРЕУТВЕРЖДЕНА:

На заседании кафедры высшей математики

Протокол заседания кафедры № 5 от 28 января 2021 г.

Заведующий кафедрой высшей математики

Матыцина Т. Н., к. ф.-м. н., доцент

подпись

1. Цели и задачи освоения дисциплины

Дисциплина «Линейные операторы в гильбертовых пространствах» является специальным математическим курсом для аспирантов направленности 01.01.02 «Дифференциальные уравнения, динамические системы и оптимальное управление». Курс является продолжением курса «Дифференциальные уравнения, динамические системы и оптимальное управление», рассматривая некоторые свойства линейных операторов, в частности оператора Коши линейной систем и исследование их качественных характеристик.

Цель изучения дисциплины — формирование у аспирантов углубленных знаний о действии оператора Коши на пространствах бесконечной размерности.

Задачи дисциплины:

- сформировать у аспирантов представление о видах функциональных пространств;
- дать основные понятия теории функциональных пространств;
- сформировать знание свойств условной устойчивости в почти периодических системах.

2. Перечень планируемых результатов обучения по дисциплине

Аспиранты, завершившие изучение дисциплины «Линейные операторы в гильбертовых пространствах», должны знать:

- определения основных типов свойств функциональных пространств (топологические, метрические и т. д.);
 - теорию сужения оператора на подпространства;
 - понятия приводимости и почти приводимости.

Аспиранты, завершившие изучение дисциплины «Линейные операторы в гильбертовых пространствах», должны уметь:

- использовать указанные выше понятия при решении задач на устойчивость, при этом использовать оптимальный метод;
- определять качественные характеристики действия оператора на конечномерных подпространствах;
 - доказывать свойства показателей в гильбертовых пространствах.

Аспиранты, завершившие изучение дисциплины «Линейные операторы в гильбертовых пространствах», должны владеть:

- методами исследования условной устойчивости;
- методикой разложения действия оператора по ортогональной системе.

Аспиранты, завершившие изучение дисциплины «Линейные операторы в гильбертовых пространствах», должны освоить компетенцию:

 $-\Pi$ К-1 (способность ставить задачи, приводящие к решению дифференциальных уравнений, формализовывать такие задачи, исследовать оптимальную методику их решения в рамках специализации).

3. Место дисциплины в структуре ОП ВО

Дисциплина «Линейные операторы в гильбертовых пространствах» относится к вариативной части учебного плана, к дисциплинам по выбору. Изучается в 5 семестре. Дисциплина обеспечивает приобретение компетенций в соответствии с требованиями федерального государственного образовательного стандарта нового поколения.

Изучение дисциплины основывается на ранее освоенных дисциплинах/практиках:

- «Дифференциальные уравнения, динамические системы и оптимальное управление» (для компетенции ПК-1).

Изучение дисциплины является основой для освоения последующих дисциплин/практик:

- «Классификация линейных систем», практики по получению профессиональных умений и опыта профессиональной деятельности по направленности, научно-исследовательской деятельности и подготовке научно-квалификационной работы (диссертации) на соискание ученой степени кандидата наук, представления научного доклада об основных результатах подготовленной научно-квалификационной работы (диссертации) (для компетенции ПК-1).

4. Объем дисциплины (модуля)

4.1. Объем дисциплины в зачетных единицах с указанием академических (астрономических) часов и виды учебной работы

Виды учебной работы	Очная форма
Общая трудоемкость в зачетных единицах	2
Общая трудоемкость в часах	72
Аудиторные занятия в часах, в том числе:	30
Лекции	10
Практические занятия	20
Лабораторные занятия	-
Самостоятельная работа в часах	42
Форма промежуточной аттестации	Зачет в 5 семестре

4.2. Объем контактной работы на 1 обучающегося

Виды учебных занятий	Очная форма
Лекции	10
Практические занятия	20
Лабораторные занятий	-
Консультации (на группу)	0,5
Зачет/зачеты	0,25
Экзамен/экзамены	-
Курсовые работы	-
Курсовые проекты	-
Bcero	30,75

5. Содержание дисциплины (модуля), структурированное по темам (разделам), с указанием количества часов и видов занятий

5.1. Тематический план учебной дисциплины

	Название раздела, темы	Всего з.е/час	Аудиторные занятия			
№			Лекц.	Практ.	Лаб.	Самостоятельная работа
1	Функциональные пространства	12	2	4	-	6
2	Сужение оператора на конечномерное подпространство	18	2	4	-	12
3	Условная устойчивость	21	3	6	-	12
4	Разложение почти периодической функции	21	3	6	-	12
	Зачет	1	-	-	-	-
	Итого:	2/72	10	20	-	42

5.2. Содержание

Тема 1. Функциональные пространства. Топологические, метрические, нормированные и Евклидовы пространства. Примеры. Счетное всюду плотное множество. Гильбертово пространство и действия оператора на нем.

Тема 2. Сужение оператора на конечномерное подпространство. Оператор Коши системы дифференциальных уравнений. Разложение оператора в ряд. Сохранение свойств частичной суммы.

Тема 3. Условная устойчивость. Определение и свойства условной устойчивости. Условная устойчивость как качественное свойство сужения оператора Коши на конечномерное подпространство.

Тема 4. Разложение почти периодической функции. Почти периодичность по Бору. Ограниченность почти периодических функций. Разложение почти периодических функций по чистым колебаниям. Почти периодические системы. Вспомогательные показатели почти периодических систем. Почти приводимость почти периодических систем. Условная устойчивость в почти периодических системах.

6. Методические материалы для обучающихся по освоению дисциплины

Литература для проведения практических занятий и самостоятельной работы обучающихся:

[1] Немыцкий В. В. Качественная теория дифференциальных уравнений / В. В. Немыцкий, В. В. Степанов. - М. ; Л. : ОГИЗ Государственное изд-во технико-теоретической лит., 1947. - 448 с. : ил. - ISBN 978-5-4475-1957-5 ; То же [Электронный ресурс]. http://biblioclub.ru/index.php?page=book&id=255775

[2] Филиппов А. Ф. Сборник задач по дифференциальным уравнениям: учеб. пособие для студентов вузов: допущено М-вом высшего и среднего спец. образования СССР / А. Ф. Филиппов. - Изд. 5-е, испр. - М.: Наука, 1979. - 128 с.: ил. - 0.25.

6.1. Самостоятельная работа обучающихся по дисциплине

№ п/п	Раздел (тема) дисциплины	Задание	Часы	Методические рекомендации по выполнению задания	Форма контроля
1	Функциональные пространства	Изучение литературы	6	Лекционный материал, [1] (с. 134-154)	Устный опрос
2	Сужение оператора на конечномерное подпространство	Изучение литературы, решение задач	12	Лекционный материал, [1] (с. 149-152)	Устный опрос
3	Условная устойчивость	Изучение литературы, решение задач	12	Лекционный материал, [1] (с. 163-167)	Индивидуальная консультация, устный опрос
4	Разложение почти периодической функции	Изучение литературы, решение задач	12	Лекционный материал, [1] (с. 183-186)	Индивидуальное собеседование, устный опрос

6.2. Тематика и задания для практических занятий

№	Наименование темы		Рекомендуемые	
		Содержание практического занятия	материалы для	
			практического занятия	
1	Функциональные пространства	Топология, метрики, примеры пространств с разными метриками. Сепарабельность пространств	[2], c. 127-132	
2	Сужение оператора на конечномерное подпространство	Примеры конечномерных и бесконечномерных операторов в функциональных пространствах	[2], c. 142-145	
3	Условная устойчивость	Исследование условной устойчивости в линейных и нелинейных системах	[2], c. 161-170	
4	Разложение почти периодической функции	Разложение почти периодических функций по чистым колебаниям	[2], c. 183-186	

6.3. Тематика и задания для лабораторных занятий

Лабораторные занятия по данной дисциплине не запланированы.

6.4. Методические рекомендации для выполнения курсовых работ

Курсовые работы по данной дисциплине не запланированы.

7. Перечень основной и дополнительной литературы, необходимой для освоения дисциплины (модуля)

	Основная литература	
1	Асташова И.В. Практикум по курсу «Дифференциальные уравнения»: учебное пособие / И.В. Асташова, В. А. Никишкин М.: Евразийский открытый институт, 2011 96 с ISBN 978-5-374-00488-5; То же [Электронный ресурс]. http://biblioclub.ru/index.php?page=book&id=90289	
2	Дергачев В. М. Дифференциальные и разностные уравнения : учеб. пособие / В. М. Дергачев, С. Н. Лелявин ; Финансовый ун-т при Правительстве РФ М. : КНОРУС, 2016 96, [1] с Библиогр.: с. 96 ISBN 978-5-4365-0764-4 : 74.60.	1
3	Петровский И. Г. Лекции по теории обыкновенных дифференциальных уравнений: учебное пособие / И. Г. Петровский М.: ФИЗМАТЛИТ, 2009 206 с. ISBN 978-5-9221-1144-7 http://znanium.com/bookread2.php?book=544800	
	Дополнительная литература	
1	Агафонов С. А. Обыкновенные дифференциальные уравнения : учеб. пособие для студ. высш. учеб. заведений : допущено Научметод. советом / С. А. Агафонов, Т. В. Муратова М. : Академия, 2008 240 с (Университетский учебник. Серия "Прикладная математика и информатика") Библиогр.: с. 231-232 Предм. указ.: с. 233-235 ISBN 978-5-7695-2581-0 : 137.94.	7
2	Егоров А. И. Обыкновенные дифференциальные уравнения с приложениями / А. И. Егоров М.: ФИЗМАТЛИТ, 2003 384 с Библиогр.: с. 375-376 Предм. указ.: с. 377-380 ISBN 5-9221-0385-7 : 150.00.	1
3	Каленова В. И. Линейные нестационарные системы и их приложения к задачам механики / В. И. Каленова, В. М. Морозов М. : ФИЗМАТЛИТ, 2010 206, [1] с Библиогр.: с. 197-206 ISBN 978-5-9221-1231-4 : 200.00. Дар РФФИ	1
4	Мирошник И. В. Теория автоматического управления : линейные системы : учеб. пособие для студ. высш. учеб. заведений: рекомендовано УМО / И. В. Мирошник СПб. : Питер, 2005 336 с (Учебное пособие) Библиогр.: с. 326-327 Предм. указ.: с. 328-333 ISBN 5-469-00350-7 : 250.00.	1
5	Немыцкий В. В. Качественная теория дифференциальных уравнений / В. В. Немыцкий, В. В. Степанов М.; Л.: ОГИЗ Государственное изд-во технико-теоретической лит., 1947 448 с.: ил ISBN 978-5-4475-1957-5; То же [Электронный ресурс]. http://biblioclub.ru/index.php?page=book&id=255775	
6	Сачков Ю. Л. Управляемость и симметрии инвариантных систем на группах Ли и однородных пространствах: монография / Ю. Л. Сачков М.: ФИЗМАТЛИТ, 2007 224 с (Математика. Прикладная математика) Библиогр.: с. 218-223 ISBN 978-5-9221-0843-0: 130.00.	1
7	Филиппов А. Ф. Сборник задач по дифференциальным уравнениям: учеб. пособие для студентов вузов: допущено М-вом высшего и среднего спец. образования СССР / А. Ф. Филиппов Изд. 5-е, испр М.: Наука, 1979 128 с.: ил 0.25.	5

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Библиотека КГУ http://library.ksu.edu.ru/

ЭБС «Лань» http://e.lanbook.com/

ЭБС Университетская библиотека онлайн http://biblioclub.ru

ЭБС «ZNANIUM.COM» http://znanium.com

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Ауд. 412 корп. Е — аудитория для лекционных, семинарских/практических занятий, индивидуальных/групповых консультаций, текущего контроля и промежуточной аттестации	Число посадочных мест – 50	Специальное ПО не требуется
Ауд. 406 корп. Е – помещение для самостоятельной работы (компьютерный класс)	Число посадочных мест — 24. Число мест оборудованных компьютерами — 12 с выходом в интернет Оснащенность: компьютер для преподавателя, стационарный проектор, переносной экран	Свободно распространяемый офисный пакет с открытым исходным кодом LibreOffice
Ауд. 201 корп. Б1 – помещение для самостоятельной работы (читальный зал)	Число посадочных мест — 200. Оснащенность: 3 компьютера для сотрудников; принтер; копир/принтер; проектор; 2 экрана для проектора; ворота «Антивор»; WiFiточка доступа	Свободно распространяемый офисный пакет с открытым исходным кодом LibreOffice; автоматизированная информационнобиблиотечная система «MAPK – SQL»
Ауд. 202 корп. Б1 — помещение для самостоятельной работы (электронный читальный зал)	Число посадочных мест – 22. Число мест, оборудованных компьютерами – 22 с выходом в интернет. Оснащенность: 4 компьютера для сотрудников; 4 принтера; плоттер; 2 сканера; МФУ; ЛСД ТВ	Свободно распространяемый офисный пакет с открытым исходным кодом LibreOffice; автоматизированная информационнобиблиотечная система «MAPK – SQL»